Skip to Navigation
    University of New Haven
   
 
  Jul 25, 2017
 
 
    
Skip Navigation
2012-2014 Undergraduate Catalog [ARCHIVED CATALOG]

Computer Engineering, B.S.


Return to: Tagliatela College of Engineering

Program Coordinator: Christopher Martinez, Ph.D.

The B.S. program in computer engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Computer engineering is concerned with design and implementation of digital systems such as computer systems, computer-based control systems, interfaces between digital and analog systems, interfaces between hardware and software, and control software for embedded computer systems. This program spans the disciplines of both electrical engineering and computer science, and can be described as bridging the area between the two.

Computers are used in almost every device or system manufactured today, from large multicomputer systems to cell phones and credit card reading devices. In addition, they are used in signal processing applications, speech recognition, medical imaging, and picture and data communication. The Internet is possible in part because of advances made in computing machines and data communications by people working in the capacity of computer engineers. Careers for computer engineers are found in all phases of the production of these devices and systems, from design, manufacturing, and maintenance to marketing and sales.

Recognizing the changing trend in engineering education, the Computer Engineering program has adopted a multidisciplinary approach for teaching and learning by incorporating a series of newly developed project-oriented courses based on the spiral curriculum.

The early part of the program emphasizes computer engineering skills that form the background for the upper-level elective and design courses. Physics, chemistry, mathematics, computer programming, basic engineering science, and general education courses supplement the required and elective computer engineering courses.

The upper-level computer engineering course work provides areas of concentration for in-depth study. Students can choose additional technical electives from outside the area of concentration to provide more breadth of knowledge.

To influence our society’s evolution, the computer engineer must acquire an understanding of our society, our cultural heritage, and the human condition. The engineer must communicate ideas to other engineers and to the public. The Computer Engineering program enables this via liberal and humanistic studies. The University Core Curriculum requirements allow students to expand their cultural and intellectual horizons by exposing them to the humanities and social sciences. Students learn written and oral communication skills in the core courses as well as in multidisciplinary engineering-science courses in the freshman and sophomore years. Students apply these skills in the humanities and social science courses as well as in laboratory/design courses in their major.

An important feature of the computer engineering curriculum is the design experience. Our students develop the ability to analyze appropriate models, conduct empirical tests, gather relevant information, interpret empirical tests, develop appropriate models, develop alternative solutions, formulate problems, and synthesize in our laboratory sequence. This sequence of courses takes the student in gradual steps from a well-structured laboratory experiment in the sophomore year to an open-ended design project in the senior year. This allows students to gain practical experience in engineering design.

Internship Requirement

The internship program is intended to enrich the academic experience of our undergraduate students, providing exposure to and participation in a working engineering environment. Each internship must involve a partnership consistingof the student, faculty, and employers/organizations to provide each student intern with an optimal experience. A minimum of 300 hours performing relevant engineering duties is required prior to graduation. Students must complete 60 credits toward the bachelor’s degree in computer engineering before an internship is attempted.

The internship carries no credit for the degree; however, the requirement may be satisfied utilizing a co-op position, summer employment, and part-time or full-time positions that are approved by the student’s employer and by the department/internship coordinator as relevant to the goals of the internship experience. A waiver (or substitution) of the internship requirement may be granted for students who are employed in the field, subject to a formal review by the department/internship coordinator. The student’s request for such a waiver must be initiated one year prior to the anticipated graduation date.

Educational Objectives

The educational objectives of the Computer Engineering program prepare students for professional practice and lifelong learning. Program graduates will demonstrate the following qualities and attributes:

  • High-quality performance as computer engineers in industry who have a strong theoretical background for pursuing graduate studies
  • Leadership abilities and an understanding of human relationships in general
  • The ability to function as innovators, entrepreneurs, and problem-solvers in industry or academia
  • The ability to function as members of multidisciplinary teams or as team leaders, and the ability to secure high-level managerial positions in their discipline
  • The ability to deal with societal and global issues such as environmental and ethical concerns

Design and problem-solving are the central themes of this program. It combines the engineering and hardware approach of electrical engineering with the knowledge of computing structures and the algorithmic approach of computer science. The first two years of the program concentrate on basic science, mathematics, and engineering. The last two years consist of courses in digital systems, computer systems, networks, electrical systems, and design of software systems. Three electives in the fourth year give the student an opportunity to explore a hardware and/or software-oriented program. The final year includes a year-long senior design project in which the student designs a device, system, or software application. Depending on the student’s interests, the project can be hardware and/or software oriented. Industry-based projects are encouraged. The program also has a general education component in communications, economics, and the humanities needed to create a well-rounded professional.

Required Courses


Students must complete a total of 127 credits to earn the bachelor of science degree in computer engineering. Humanities or social science electives must be selected to fulfill the University Core Curriculum requirements, and students must complete the internship requirement.

Technical electives are 300-level or higher CS or EE courses that fit into the student’s plan of study and are approved by the academic adviser. One technical elective may be taken outside the specified areas with the approval of the academic adviser. In the final year of study the student takes a two-semester senior design sequence, CEN 497  and CEN 498 . In the first semester the student selects a topic, completes a literature search, and commences the design process. In the second semester, the student completes the design, implements the project, and presents the results.

The following list shows the sequence of courses that a student should follow to complete the program in four years.

One from each of the categories below:


  • Social Interaction core elective
  • Communication core elective
  • Aesthetic Responsiveness core elective
  • Global Perspective core elective

Return to: Tagliatela College of Engineering