2024-2025 Undergraduate Catalog 
    
    Jun 29, 2024  
2024-2025 Undergraduate Catalog

Chemical & Biomolecular Engineering, General Concentration, B.S.


Return to {$returnto_text} Return to: Undergraduate Programs

STEM Designation: This program is STEM (science, technology, engineering, and math)-designated by the Department of Homeland Security. For more information, please see https://www.newhaven.edu/admissions/stem-designated-programs.php

The B.S. program in Chemical & Biomolecular Engineering is accredited by the Engineering Accreditation Commission of  ABET, www.abet.org . The Chemical & Biomolecular Engineering program is challenging, but for those genuinely interested, it develops the depth of knowledge required to embark on a fascinating and satisfying professional career in industry or government or to continue study at the graduate level.

The first chemical & biomolecular engineering course, taken in the spring of the first year, is the beginning of a well-integrated sequence that builds on the multidisciplinary foundation. Each chemical & biomolecular engineering course contributes uniquely to the development of skills in problem solving, communication, computer usage, and engineering analysis and design. Several common themes weave throughout these courses, including safety, concern for the environment, sustainability, and practical application of knowledge to real-world problems. A comprehensive laboratory experience is integrated into the program, including work in chemistry as well as chemical & biomolecular engineering. This laboratory experience contributes to these educational objectives through the use of modern, industrial-type data acquisition and control instruments on bench-scale to pilot-scale process equipment. A two-semester sequence of capstone design work in the senior year enables the student to synthesize and focus on the entire curriculum.  Choice of chemistry and biology electives along with several engineering or science electives allow flexibility in the program, to include areas of special interest.

Program Outcomes

  1. Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
  2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
  3. Communicate effectively with a range of audiences.
  4. Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
  5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
  6. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
  7. Acquire and apply new knowledge as needed, using appropriate learning strategies.

Students in the Chemical & Biomolecular Engineering program satisfy the University Core Curriculum requirements through specified courses and electives. University Core Curriculum categories are indicated in the list below for such electives.

Dual Degree options exist such that students can complete a B.S. in Chemical & Biomolecular Engineering and an M.S. in Chemical Engineering, Environmental Engineering, Chemistry, or Biomedical Engineering with only one additional year of study.

Required Courses


(130 credits total)

Biology Elective: a 3 or 4 credit course chosen from the following:


Engineering or Science Electives


Upper-level courses (usually 3xxx level or higher) chosen from engineering, natural sciences, or mathematics.  Courses in elective Tiers I and II above will satisfy this requirement.  The chemical engineering department maintains a list of current courses which satisfy this requirement.  Consult your advisor for details.

Note(s):


In some cases, students may wish to take courses beyond those required for the degree, to gain depth in an area of interest.

Accelerated Graduate Programs for B.S. Chemical & Biomolecular Engineering


Direct Entry B.S. Chemical & Biomolecular Engineering/M.S. Chemistry


The direct entry, combined B.S. Chemical & Biomolecular Engineering/M.S. Chemistry degree program augments the chemistry background that is included in the B.S. Chemical & Biomolecular Engineering program to prepare students for careers that require a deeper understanding of chemistry. To prepare for entry to the M.S. Chemistry program, students work with their advisor to choose appropriate chemistry courses for the elective requirements of the B.S. Chemical & Biomolecular Engineering program (eg., Organic Chemistry II, Instrumental Analysis and Physical Chemistry II). During the senior year, four graduate-level chemistry courses can be taken that count toward the M.S. in Chemistry. Students graduate with a B.S. in Chemical & Biomolecular Engineering at the end of the fourth year and take the remaining graduate-level courses in the fifth year to complete the M.S. in Chemistry.

Direct Entry B.S. Chemical & Biomolecular Engineering/M.S. Biomedical Engineering


The direct entry, combined B.S. Chemical & Biomolecular Engineering/M.S. Biomedical Engineering degree program is a powerful combination for students interested in the biomedical field. Students choose particular electives in the B.S. Chemical & Biomolecular Engineering program (eg., Organic Chemistry II and three Biology courses) to prepare for graduate biomedical engineering courses. During the senior year students may take three graduate-level biomedical engineering courses that count toward the M.S. in Biomedical Engineering. Students graduate with a B.S. in Chemical & Biomolecular Engineering following their fourth year and take the remaining graduate-level courses in the fifth year to complete the M.S. in Biomedical Engineering.

Direct Entry B.S. Chemical & Biomolecular Engineering/M.S. Environmental Engineering


The direct entry, combined B.S. Chemical & Biomolecular Engineering/M.S. Environmental Engineering degree program is a great combination for students pursuing a career in the environmental area. During the senior year, students may take three graduate-level environmental engineering courses that count toward the M.S. in Environmental Engineering. Students graduate with a B.S. in Chemical & Biomolecular Engineering following their fourth year and take the remaining graduate-level courses in the fifth year to complete the M.S. in Environmental Engineering.

Direct Entry B.S. Chemical & Biomolecular Engineering/M.S. Chemical Engineering


The direct entry, combined B.S. Chemical & Biomolecular Engineering/M.S. Chemical Engineering degree program lets students delve into more complex chemical engineering topics. During the senior year, students may take three graduate-level chemical engineering courses that count toward the M.S. in Chemical Engineering. Students graduate with a B.S. in Chemical & Biomolecular Engineering following their fourth year and take the remaining graduate-level courses in the fifth year to complete the M.S. in Chemical Engineering.

Return to {$returnto_text} Return to: Undergraduate Programs